Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.842
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 763-769, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621880

RESUMO

This study aims to investigate the effect of Erchen Decoction(ECD) on liver mitochondrial function in mice with a high-fat diet and its possible mechanism. A total of sixty C57BL/6J mice were randomly divided into a normal group, high-fat group, ECD group, mTORC1 activator(MHY) group, ECD+MHY group, and polyene phosphatidyl choline(PPC) group, with 10 rats in each group. The normal group was given a normal diet, and the other groups were fed a high-fat diet for 20 weeks. At the 17th week, the ECD group and ECD+MHY group were given ECD(8.7 g·kg~(-1)) daily, and the PPC group was given PPC(0.18 g·kg~(-1)) daily, while the remaining groups were given normal saline(0.01 mL·g~(-1)) daily for four weeks. In the 19th week, the MHY group and ECD+MHY group were injected intraperitoneally with MHY(5 mg·kg~(-1)) every other day for two weeks. During the experiment, the general conditions of the mice were observed. The contents of triglyceride(TG) and total cholesterol(TC) in serum were measured. Morphological changes in liver tissue were examined through HE and oil red O staining. The content of adenosine triphosphate(ATP) was determined using chemiluminescence, and mitochondrial membrane potential was assessed using a fluorescence probe(JC-1). Western blot was performed to detect the expression of rapamycin target protein complex 1(mTOR1), ribosomal protein S6 kinase B1(S6K), sterol regulatory element binding protein 1(SREBP1), and caveolin 1(CAV1). RESULTS:: revealed that compared with the normal group, the mice in the high-fat group exhibited significant increases in body weight and abdominal circumference(P<0.01). Additionally, there were significant increases in TG and TC levels(P<0.01). HE and oil red O staining showed that the boundaries of hepatic lobules were unclear; hepatocytes were enlarged, round, and irregularly arranged, with obvious lipid droplet deposition and inflammatory cell infiltration. The liver ATP content and mitochondrial membrane potential decreased significantly(P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 increased significantly(P<0.01), while the expression of CAV1 decreased significantly(P<0.01). Compared with the high-fat group, the body weight and TG content of mice in the ECD group and PPC group decreased significantly(P<0.05). Improvements were observed in hepatocyte morphology, lipid deposition, and inflammatory cell infiltration. Furthermore, there were significant increases in ATP content and mitochondrial membrane potential(P<0.05 or P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly in the ECD group(P<0.01), while CAV1 expression increased significantly(P<0.01). However, the indices mentioned above did not show improvement in the MHY group. When the ECD+MHY group was compared with the MHY group, there were significant reductions in body weight and TG contents(P<0.05). The morphological changes of hepatocytes, lipid deposition, and inflammatory cell infiltration were recovered. Moreover, there were significant increases in liver ATP content and mitochondrial membrane potential(P<0.05 or P<0.05). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly(P<0.01), while CAV1 expression increased significantly(P<0.01). In conclusion, ECD can improve mitochondrial function by regulating the mTORC1/SREBP1/CAV1 pathway. This mechanism may be involved in the resolution of phlegm syndrome and the regulation of lipid metabolism.


Assuntos
Compostos Azo , Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo , Peso Corporal , Trifosfato de Adenosina/farmacologia
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621976

RESUMO

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Assuntos
Alcaloides de Berberina , Hipóxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiologia , Caspase 3 , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais
3.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594244

RESUMO

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Assuntos
60489 , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/farmacologia , Lipídeos/farmacologia , Trifosfato de Adenosina/farmacologia , Proliferação de Células/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo
4.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654149

RESUMO

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Assuntos
Trifosfato de Adenosina , Esôfago , Canais KATP , Músculo Liso , Receptores Purinérgicos P2Y , Animais , Ratos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Músculo Liso/metabolismo , Masculino , Receptores Purinérgicos P2Y/metabolismo , Esôfago/efeitos dos fármacos , Esôfago/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Canais KATP/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Ratos Wistar , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Ratos Sprague-Dawley
5.
CNS Neurosci Ther ; 30(4): e14703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572816

RESUMO

INTRODUCTION: Painful diabetic neuropathy (PDN) is a common complication of diabetes. Previous studies have implicated that mitochondrial dysfunction plays a role in the development of PDN, but its pathogenesis and mechanism have not been fully investigated. METHODS: In this study, we used high-fat diet/low-dose streptozotocin-induced rats as a model of type 2 diabetes mellitus. Behavioral testing, whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons, and complex sensory nerve conduction velocity studies were used to assess peripheral neuropathy. Mitochondrial membrane potential (MMP), ATP, tissue reactive oxygen species, and transmission electron microscopy were used to evaluate the function and morphology of mitochondria in DRG. Real-time PCR, western blot, and immunofluorescence were performed to investigate the mechanism. RESULTS: We found that damaged mitochondria were accumulated and mitophagy was inhibited in PDN rats. The expression of sirtuin 3 (SIRT3), which is an NAD+-dependent deacetylase in mitochondria, was inhibited. Overexpression of SIRT3 in DRG neurons by intrathecally administered LV-SIRT3 lentivirus ameliorated neurological and mitochondrial dysfunctions. This was evidenced by the reversal of allodynia and nociceptor hyperexcitability, as well as the restoration of MMP and ATP levels. Overexpression of SIRT3 restored the inhibited mitophagy by activating the FoxO3a-PINK1-Parkin signaling pathway. The effects of SIRT3 overexpression, including the reversal of allodynia and nociceptor hyperexcitability, the improvement of impaired mitochondria and mitophagy, and the restoration of PINK1 and Parkin expression, were counteracted when FoxO3a siRNA was intrathecally injected. CONCLUSION: These results showed that SIRT3 overexpression ameliorates PDN via activation of FoxO3a-PINK1-Parkin-mediated mitophagy, suggesting that SIRT3 may become an encouraging therapeutic strategy for PDN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Sirtuína 3 , Animais , Ratos , Trifosfato de Adenosina/farmacologia , Hiperalgesia , Mitofagia , Proteínas Quinases/metabolismo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Discov Med ; 36(182): 494-508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531790

RESUMO

BACKGROUND: Mandibular distraction osteogenesis (MDO) is a highly effective method for bone regeneration, commonly employed in treating craniofacial defects and deformities. Osteocytes sense mechanical forces in the pericellular space, relay external stimuli to biochemical changes, and send signals to other effector cells, including bone marrow mesenchymal stem cells (BM-MSCs), to regulate bone resorption and formation. Piezo1 potentially affects the secretion signal molecules of bone cells under mechanical stretch. The primary aim of this study was to enhance our comprehension of the molecular biology underlying this therapeutic approach and to identify specific signaling molecules that facilitate bone formation in response to stretch forces. METHODS: Mechanical stretching was applied to negative controls and Piezo1 knockdown osteocyte-like MLO-Y4 cells. Alkaline phosphatase and Alizarin Red S staining were used to survey the osteogenic potential of BM-MSCs. The production and secretion content of adenosine triphosphate (ATP) was measured using ATP content determination analysis. Pathway-related and osteo-specific genes and proteins were evaluated using real-time polymerase chain reaction (RT-PCR), Western blots, and immunofluorescence. Mitochondrial organization was examined with a transmission electron microscope. RESULTS: The conditioned medium of stretch-exposed MLO-Y4s significantly upregulated osteogenesis-related indicators of BM-MSCs (p < 0.001). The upregulation of BM-MSC osteogenesis was associated with ATP release from osteocytes. Mechanically induced calcium transfer and transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation mediated by Piezo1 could promote mitochondrial fission and ATP release. Osteocytes detected stretch forces through Piezo1, triggering calcium influx, TAZ nuclear translocation, and ATP production. CONCLUSIONS: The stretch stimulation of Piezo1 induces calcium influx, which in turn promotes calcium-related TAZ nuclear translocation, changes in mitochondrial dynamics, and the release of ATP in osteocytes. This signaling cascade leads to an up-regulation in the osteogenic capacity of BM-MSCs. Mitochondrial energy metabolism of mechanosensitive protein Piezo1-dependent and ATP release may provide a new effective intervention method for mechanically related bone remodeling.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/fisiologia , Osteócitos/metabolismo , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Células da Medula Óssea/metabolismo
7.
Mol Med Rep ; 29(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38456519

RESUMO

Inflammasome activation is a crucial mechanism in inflammatory responses. Bax­interacting factor 1 (Bif­1) is required for the normal formation of autophagosomes, but its ability to exert an inflammatory regulatory effect remains unclear. The aim of the present study was to explore the role of Bif­1 in inflammation, possibly mediated through autophagy regulation. Using a lipopolysaccharide (LPS)/adenosine triphosphate (ATP)­induced inflammatory model in J774A.1 cells, the effect of Bif­1 on inflammasome activation and the underlying mechanisms involving autophagy regulation were investigated. Elevated levels of NLR family pyrin domain containing protein 3 inflammasome and interleukin­1ß (IL­1ß) proteins were observed in J774A.1 cells after LPS/ATP induction. Furthermore, Bif­1 and autophagy activity were significantly upregulated in inflammatory cells. Inhibition of autophagy resulted in inflammasome activation. Silencing Bif­1 expression significantly upregulated IL­1ß levels and inhibited autophagy activity, suggesting a potential anti­inflammatory role of Bif­1 mediated by autophagy. Additionally, inhibition of the nuclear factor­κB (NF­κB) signaling pathway downregulated Bif­1 and inhibited autophagy activity, highlighting the importance of NF­κB in the regulation of Bif­1 and autophagy. In summary, the current study revealed that Bif­1 is a critical anti­inflammatory factor against inflammasome activation mediated by a mechanism of autophagy regulation, indicating its potential as a therapeutic target for inflammatory regulation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Autofagia/genética , Anti-Inflamatórios/farmacologia , Trifosfato de Adenosina/farmacologia
8.
Int Heart J ; 65(2): 372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556346

RESUMO

Several errors (shown with underlines) in the following list appeared in the article "Effect of Thimerosal on Arrhythmia Induced by Coronary Ligation: The Involvement of ATP-dependent Potassium Channels" by Ömer Bozdogan, Ersöz Gonca, Melih Nebigil, Eylem Suveren Tiryaki (Vol. 46 No.4, 711-721, 2005).


Assuntos
Canais de Potássio , Timerosal , Humanos , Timerosal/farmacologia , Arritmias Cardíacas/etiologia , Trifosfato de Adenosina/farmacologia
9.
Am J Physiol Endocrinol Metab ; 326(4): E537-E544, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477876

RESUMO

There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.


Assuntos
Ilhotas Pancreáticas , Compostos de Amônio Quaternário , Paladar , Camundongos , Animais , Glucagon/farmacologia , Insulina/farmacologia , Glucose/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Somatostatina/farmacologia , Trifosfato de Adenosina/farmacologia
10.
Mol Neurodegener ; 19(1): 24, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468308

RESUMO

Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 µm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid ß (Aß), we infused locally Hi-Lyte Fluor 555-labeled Aß in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aß, and less Aß coverage at early time points after Aß injection. To test whether P2RY12 is involved in process movement in response to Aß, we treated acute brain slices with a P2RY12 antagonist before Aß injection; microglial processes no longer migrated towards Aß. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aß pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Genótipo , Camundongos Transgênicos , Microglia/metabolismo
11.
Cell Death Dis ; 15(3): 204, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467612

RESUMO

Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.


Assuntos
Transdução de Sinais , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Bexiga Urinária/metabolismo , Proliferação de Células , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Mamíferos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
12.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396664

RESUMO

The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by cholinergic components but also by non-cholinergic components in the esophagus. Adenosine triphosphate (ATP) is known to regulate smooth muscle contraction and relaxation in the gastrointestinal tract via purinergic receptors. However, the precise mechanism of purinergic regulation in the esophagus is still unclear. Therefore, the aim of the present study was to clarify the effects of ATP on the mechanical responses of the esophageal muscle in mice. An isolated segment of the mouse esophagus was placed in a Magnus's tube and longitudinal mechanical responses were recorded. Exogenous application of ATP induced contractile responses in the esophageal preparations. Tetrodotoxin, a blocker of voltage-dependent sodium channels in neurons and striated muscle, did not affect the ATP-induced contraction. The ATP-evoked contraction was blocked by pretreatment with suramin, a purinergic receptor antagonist. RT-PCR revealed the expression of mRNA of purinergic receptor genes in the mouse esophageal tissue. The findings suggest that purinergic signaling might regulate the motor activity of mouse esophageal smooth muscle.


Assuntos
Trifosfato de Adenosina , Músculo Estriado , Camundongos , Animais , Trifosfato de Adenosina/farmacologia , Contração Muscular/fisiologia , Esôfago , Músculo Estriado/fisiologia , Receptores Purinérgicos , Músculo Liso , Mamíferos
13.
Medicina (Kaunas) ; 60(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399488

RESUMO

Drug resistance remains one of the main causes of poor outcome in cancer therapy. It is also becoming evident that drug resistance to both chemotherapy and to antibiotics is driven by more than one mechanism. So far, there are at least eight recognized mechanisms behind such resistance. In this review, we choose to discuss one of these mechanisms, which is known to be partially driven by a class of transmembrane proteins known as ATP-binding cassette (ABC) transporters. In normal tissues, ABC transporters protect the cells from the toxic effects of xenobiotics, whereas in tumor cells, they reduce the intracellular concentrations of anticancer drugs, which ultimately leads to the emergence of multidrug resistance (MDR). A deeper understanding of the structures and the biology of these proteins is central to current efforts to circumvent resistance to both chemotherapy, targeted therapy, and antibiotics. Understanding the biology and the function of these proteins requires detailed structural and conformational information for this class of membrane proteins. For many years, such structural information has been mainly provided by X-ray crystallography and cryo-electron microscopy. More recently, mass spectrometry-based methods assumed an important role in the area of structural and conformational characterization of this class of proteins. The contribution of this technique to structural biology has been enhanced by its combination with liquid chromatography and ion mobility, as well as more refined labelling protocols and the use of more efficient fragmentation methods, which allow the detection and localization of labile post-translational modifications. In this review, we discuss the contribution of mass spectrometry to efforts to characterize some members of the ATP-binding cassette (ABC) proteins and why such a contribution is relevant to efforts to clarify the link between the overexpression of these proteins and the most widespread mechanism of chemoresistance.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Microscopia Crioeletrônica , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Transportadores de Cassetes de Ligação de ATP , Antibacterianos/uso terapêutico , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Neoplasias/tratamento farmacológico
14.
J Neuroinflammation ; 21(1): 58, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409076

RESUMO

Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1ß. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1ß release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.


Assuntos
Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Canais Iônicos/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X7/metabolismo
15.
J Clin Oncol ; 42(12): 1439-1449, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408285

RESUMO

PURPOSE: Imatinib resistance in GI stromal tumors (GISTs) is primarily caused by secondary KIT mutations, and clonal heterogeneity of these secondary mutations represents a major treatment obstacle. KIT inhibitors used after imatinib have clinical activity, albeit with limited benefit. Ripretinib is a potent inhibitor of secondary KIT mutations in the activation loop (AL). However, clinical benefit in fourth line remains limited and the molecular mechanisms of ripretinib resistance are largely unknown. PATIENTS AND METHODS: Progressing lesions of 25 patients with GISTs refractory to ripretinib were sequenced for KIT resistance mutations. Resistant genotypes were validated and characterized using novel cell line models and in silico modeling. RESULTS: GISTs progressing on ripretinib were enriched for secondary mutations in the ATP-binding pocket (AP), which frequently occur in cis with preexisting AL mutations, resulting in highly resistant AP/AL genotypes. AP/AL mutations were rarely observed in a cohort of progressing GIST samples from the preripretinib era but represented 50% of secondary KIT mutations in patients with tumors resistant to ripretinib. In GIST cell lines harboring secondary KIT AL mutations, the sole genomic escape mechanisms during ripretinib drug selection were AP/AL mutations. Ripretinib and sunitinib synergize against mixed clones with secondary AP or AL mutants but do not suppress clones with AP/AL genotypes. CONCLUSION: Our findings underscore that KIT remains the central oncogenic driver even in late lines of GIST therapy. KIT-inhibitor combinations may suppress resistance because of secondary KIT mutations. However, the emergence of KIT AP/AL mutations after ripretinib treatment calls for new strategies in the development of next-generation KIT inhibitors.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Naftiridinas , Ureia/análogos & derivados , Humanos , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/genética , Neoplasias Gastrointestinais/tratamento farmacológico
16.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339205

RESUMO

Graphene oxide (GO) has received increasing attention in the life sciences because of its potential for various applications. Although GO is generally considered biocompatible, it can negatively impact cell physiology under some circumstances. Here, we demonstrate that the cytotoxicity of GO greatly varies depending on the cell adhesion states. Human HCT-116 cells in a non-adhered state were more susceptible to GO than those in an adherent state. Apoptosis was partially induced by GO in both adhered and non-adhered cells to a similar extent, suggesting that apoptosis induction does not account for the selective effects of GO on non-adhered cells. GO treatment rapidly decreased intracellular ATP levels in non-adhered cells but not in adhered ones, suggesting ATP depletion as the primary cause of GO-induced cell death. Concurrently, autophagy induction, a cellular response for energy homeostasis, was more evident in non-adhered cells than in adhered cells. Collectively, our observations provide novel insights into GO's action with regard to cell adhesion states. Because the elimination of non-adhered cells is important in preventing cancer metastasis, the selective detrimental effects of GO on non-adhered cells suggest its therapeutic potential for use in cancer metastasis.


Assuntos
Grafite , Neoplasias , Humanos , Apoptose , Grafite/farmacologia , Linhagem Celular Tumoral , Trifosfato de Adenosina/farmacologia , Óxidos/farmacologia
17.
Nutrients ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337668

RESUMO

Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Ácido Ascórbico/farmacologia , Receptores Purinérgicos P2X7 , Autofagia , Trifosfato de Adenosina/farmacologia
18.
Parasit Vectors ; 17(1): 96, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424591

RESUMO

BACKGROUND: Toxoplasmosis is a zoonotic disease caused by the infection of the protozoa Toxoplasma gondii (T. gondii), and safe and effective therapeutic drugs are lacking. Mitochondria, is an important organelle that maintains T. gondii survival, however, drugs targeting mitochondria are lacking. METHODS: The cytotoxicity of BAM15 was detected by CCK-8 and the in vitro effects of BAM15 was detected by qPCR, plaque assay and flow cytometry. Furthermore, the ultrastructural changes of T. gondii after BAM15 treatment were observed by transmission electron microscopy, and further the mitochondrial membrane potential (ΔΨm), ATP level and reactive oxygen species (ROS) of T. gondii after BAM15 treatment were detected. The pharmacokinetic experiments and in vivo infection assays were performed in mice to determine the in vivo effect of BAM15. RESULTS: BAM15 had excellent anti-T. gondii activity in vitro and in vivo with an EC50 value of 1.25 µM, while the IC50 of BAM15 in Vero cells was 27.07 µM. Notably, BAM15 significantly inhibited proliferation activity of T. gondii RH strain and Prugniaud strain (PRU), caused T. gondii death. Furthermore, BAM15 treatment induced T. gondii mitochondrial vacuolation and autolysis by TEM. Moreover, the decrease in ΔΨm and ATP level, as well as the increase in ROS production further confirmed the changes CONCLUSIONS: Our study identifies a useful T. gondii mitochondrial inhibitor, which may also serve as a leading molecule to develop therapeutic mitochondrial inhibitors in toxoplasmosis.'


Assuntos
Doenças dos Roedores , Toxoplasma , Toxoplasmose , Chlorocebus aethiops , Animais , Camundongos , Células Vero , Espécies Reativas de Oxigênio , Toxoplasmose/tratamento farmacológico , Mitocôndrias , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico
19.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339008

RESUMO

MCs are tissue-resident immune cells that strategically reside in barrier organs and respond effectively to a wide range of stimuli, such as IL-33, a mediator released upon epithelial damage. Adenosine triphosphate (ATP) accumulates at sites of tissue injury and is known to modulate MC activities. This study investigated how an inflammatory tissue environment rich in IL-33 modulates the ATP-mediated activation of MCs. Human primary MCs primed with IL-33 displayed a strongly increased response to ATP but not ADP. This resulted in increased degranulation, IL-8 release, and pERK1/2 signalling. Such effects are unique to IL-33 stimulation and not shared by the epithelial alarmin, TSLP. MC exposure to IL-33 also increased membrane expression of purinergic and ATP-binding P2X receptors. The use of selective P2X receptor inhibitors identified P2X7 receptor as the key mediator of the enhanced ATP-induced ERK1/2 signalling and degranulation in IL-33-primed MCs. Whilst the inhibition of P2X1 and P2X4 receptors had no effect on MC degranulation, inhibiting these receptors together with P2X7 resulted in further decreased MC-mediated degranulation. These data therefore point toward the potential mechanisms by which IL-33 contributes to the modulation of ATP-mediated activation in human MCs.


Assuntos
Degranulação Celular , Interleucina-33 , Receptores Purinérgicos P2X7 , Humanos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Degranulação Celular/genética , Degranulação Celular/fisiologia , Interleucina-33/farmacologia , Interleucina-33/metabolismo , Mastócitos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
20.
Mol Immunol ; 167: 53-61, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359646

RESUMO

The spike protein of SARS-CoV-2 as well as its receptor binding domain (RBD) has been demonstrated to be capable of activating the release of pro-inflammatory mediators in endothelial cells and immune cells such as monocytes. However, the effects of spike protein or its RBD on airway epithelial cells and mechanisms underlying these effects have not been adequately characterized. Here, we show that the RBD of spike protein alone can induce bronchial epithelial inflammation in a manner of ATP/P2Y2 dependence. Incubation of human bronchial epithelia with RBD induced IL-6 and IL-8 release, which could be inhibited by antibody. The incubation of RBD also up-regulated the expression of inflammatory indicators such as ho-1 and mkp-1. Furthermore, ATP secretion was observed after RBD treatment, P2Y2 receptor knock down by siRNA significantly suppressed the IL-6 and IL-8 release evoked by RBD. Additionally, S-RBD elevated the phosphorylation level of ERK1/2, and the effect that PD98059 can inhibit the pro-inflammatory cytokine release suggested the participation of ERK1/2. These novel findings provide new evidence of SARS-CoV-2 on airway inflammation and introduce purinergic signaling as promising treatment target.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Sistema de Sinalização das MAP Quinases , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Transdução de Sinais , Mucosa Respiratória/metabolismo , Inflamação/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...